Tropical Cyclone Rainbands Over Land in South Florida: Multi-Wavelength Radar Observations and their Educational Applications

> Shaunna Donaher RSMAS, MPO Ph.D. Defense May 8, 2012

Main Objectives

- Rainband Observations
 - Study the dynamics of outer stratiform rainbands over land

- Educational Applications
 - Test two lab approaches for using field data in an undergraduate classroom

Outline

- Rainband Research
 - Motivation/Background
 - Experiment/Methods
 - Results
 - Stratiform Profiles
 - Mean Wind Components
 - Time Series Case
 - Low-Level Wind
 - Variability Cases
 - Summary
- Science Education Research

Motivation and Background

Motivation

 Study dynamics of stratiform rainbands over land using a variety of in-situ instruments and radars of different wavelengths

- Focus on:
 - Vertical structure of wind components
 - Location of jets and inflection points
 - Changes during band passage
 - Surface layer
 - Mesoscale/Microscale wind variability

Motivation

- Why do we care about the wind structure over land?
 - Describe conditions in an urban coastal environment as rainband passes over
 - Surface layer
 - Impact of wind speeds on tall buildings
 - "Universal" logarithmic slope?
 - Roll structures
 - Wurman and Winslow 1998; Morrison et al. 2005; Lorsolo et al. 2008;
 - Tornado genesis
 - Novlan and Gray 1974; Gentry 1983; Baker et al. 2009

Previous Rainband Observations

- Flights over water
 - Barnes et al. 1983; Jorgensen 1984; Marks 1985; Barnes and Stossmeister 1986; Powell 1990; Hence and Houze 2008

- Over land with Wind Profiler
 - May et al. 1994; May 1996; Sato 1991
- Over land with NEXRAD
 - Stewart and Lyons 1996; Spratt et al. 1997; Blackwell 2000;
 Skwira et al. 2005;

Observations of Wind Profiles

• Previous studies that show wind profiles are done from dropsondes released at 700mb (*i.e. Franklin et al. 2003; Schwendike and Kepert 2008; Zhang et al. 2011*)

Franklin et al. 2003

Observations Using VAD Technique

• Using NEXRAD

– Marks et al. 1999; Morrison et al. 2005

Morrison et al. 2005

Experiment and Instrumentation

Experiment Description

- UM South Campus/CSTARS
- Aug-Sept 2008

Images from maps.google.com

Rainband Data Set

20 bands

Fay 8/17-8/22 Gustav 8/30-8/31 2 bands

Hanna 9/5 0 bands

Ike 9/9-9/10 2 bands

Stratiform Rainbands

Storm	Date	Band #	
Fay	8/17/2008	1 2 3	
Fay	8/18/2008	4 5 6 7	
Fay	8/19/2008	8 9 10 11 12 13 14	
Fay	8/20/2008	15 16 17	
Fay	8/21/2008	18 19	
Fay	8/22/2008	20	
Gustav	8/31/2008	21 22	
Ike	9/9/2008	23 24	

14 Stratiform Cases: 8 bands, 8.9 hours

Case #	Start Time (UTC)	End Time (UTC)	Length (min)
4a	16:40	17:40	60
5a	19:54	20:00	6
9a	2:06	3:36	90
9b	3:53	4:11	18
9c	4:18	4:30	12
10a	5:09	5:21	12
10b	5:27	5:48	21
11a	9:54	10:06	12
18a	17:42	18:30	48
18b	20:00	20:42	42
21a	1:51	4:24	150
21b	5:30	6:00	30
23a	17:27	17:38	11
23b	17:51	18:12	21

Instrumentation

- Surface Instruments
 - Disdrometer
 - Rain gauge array
 - 10 ft met obs
 - 14.5m and 18 m met obs
- Upper-Air
 - Rawindsondes
- Remote Sensing
 - Ceilometer
 - Microwave Rain Radar
 - W-band radar
 - X-band radar
 - Wind Profiler (MAPR)
 - KAMX WSR-88D

Remote Sensing: X-BAND

- Vertically Pointing Radar
 - 9.4 GHz
 - 3.2 cm wavelength
 - 60 m vertical resolution
 - Reflectivity and Velocity

Remote Sensing: MAPR

Wind Profiler • 915 MHz 32.8 cm wavelength -200 m resolution Tracks diffraction pattern of backscatter

Remote Sensing: WSR-88D

- Weather Surveillance Radar 1988 Doppler
 NEXRAD (KAMX)
 - Scanning S-band radar
 - 2.8-3.0 GHz
 - 10.0-11.1 cm

WSR-88D

Method: VAD Technique

- Velocity-Azimuth Display
 - Scan radar beam about a fixed elevation angle
 - As the beam rotates, radar provides an output of radial velocity vs. azimuth (VAD)
 - Mean radial velocity is a sine function of azimuth angle

VAD Technique

VAD Wind Extraction

<u>Resolution</u> 2 m @ 65 m 85 m @ 6.5 km Mean~7 m

Stratiform Profiles

MEAN WIND COMPONENTS

Mean Wind Speed Profiles by Storm

Mean Wind Speed Profiles by Storm

Mean VAD Horizontal Wind

Radial and Tangential Winds

- Radial: Towards (negative) and away from (positive) the center of the storm
- Tangential: Perpendicular to storm (cyclonic=positive)
 <u>87% 84% 81%</u>

Mean Radial Wind Speed Profiles by Storm

Mean Radial Winds

Morrison et al. 2005

TIME VARIABILITY IN PROFILES

Time Series During Band 21

Time Series: Wind Speed

Mean Wind Speed (m/s)

Time Series: Radial Wind

Radial Wind Speed (m/s)

Time Series: Tangential Wind

Tangential Wind Speed (m/s)

LOW-LEVEL WINDS

Log-Wind Layer

Method: Log Wind Fit

u_{*}: friction velocity
 z_o: aerodynamic
 roughness length

 $z_o \sim 0.8-1.4$ m in centers of large towns

 $z_o \sim 1.5-2.5$ m in centers of cities with tall buildings

 $z_o \sim 10$ m in Appalachian Mnts

Mean $z_o = 1.5$ m

Sensitivity of z₀

- Total of 630 calculations of z₀ from all stratiform bands
- Height ranges varying by 50 meters up to a height of 500 meters

Variability

WPrime at 2 km, Band 9a

X-Band W Prime, Band 9, 8/19/2008

Fluxes: $w'V_r$ and $\overline{w'V_t}$

Band 21b W Prime (X-Band) Vr Prime (MAPR)

λ~ 3.6 km

λ~ 3.6 km

No discernible features

Forcing Mechanisms: BL Rolls

"Small scale features as linear structures"
-500 m wavelength
-Below 1000-1500 m
-Aligned with the mean wind
-More defined in Frances than
Isabel, but always present

-Can transport momentum upward

Residual Radial Velocity

3.1° Elevation Angle

15.6° Elevation Angle

1.5 km wavelength

* Thanks to Ming Fang for providing these figures

Finescale Bands

Hugo 22 Sept 1989 3:20

Regions of enhanced updrafts w'~8 m/s λ : 4-10 km z: 6 km Move with V_t

Triggered by strong (Cat 2) storms approaching land

BL shear and K-H instability

Forcing Mechanism: ML Processes

Rainband Summary

- VAD technique captures small-scale features in profile
- Main features (maxima, friction, inflow/outflow) present in all bands, but vary widely
- Time variation shows robustness of VAD features and evolution with time
- Logarithmic profile exists for each case, but does not give a universal z₀
- Vertical variability is a combination of w[']_{air} and w[']_{drops}
- BL rolls and ML processes could be acting in combination to trigger perturbations

Educational Applications

An Assessment of Traditional vs. Inquiry-Based Lab Approaches for Undergraduate Meteorological Instruction

Scientific Inquiry

The National Science Education Standards define scientific inquiry as "the activities through which students develop knowledge and understanding of scientific ideas, as well as an understanding of <u>how</u> <u>scientists study the natural world</u>."

 Inquiry is often used in the college classroom through forecasting (i.e. Yarger et al. 2000; Grundstein et al. 2011) or hands-on data collection (Cohn et al. 2006)

- What is the best way to use non-real-time data in the classroom?
 - Can content learning and NOS learning be accomplished at the same time?

Research Questions

- Does inquiry with real-world data effectively convey content knowledge in an undergraduate meteorology classroom?
- Does this approach enhance students' understanding about the nature of science or improve their attitude towards science?
- Is this approach more or less effective than a traditional approach?
- What are the challenges associated with an inquiry approach and a traditional approach and how can they be overcome?

Study Group: METR4424

Scientific Data

- 3 case studies (4a,9b,23a)
 - Radar
 - Mean wind speed
 - Radial and tangential wind

- Soundings
 - Mean wind speed and direction
 - Temp, dwpt, RH
- Supplemental
 - Surface, radar loops, storm information

Methodology

Day 1: Pretest and lecture

- 51 students randomly drew numbers

-Pretest

-Lecture: experiment, instrumentation, and background info (radar operations, VAD technique, basics of tropical cyclones, and radial/tangential winds)

Day 2: Inquiry (27 students)

Day 3: Traditional (24 students)

Day 4: Post-test and discussion

-Post-test

-Whole-class discussion

One month later: Content Retention Test

2 Approaches

Test Questions + Scoring

- Attitude
 - Likert scale (1-5)
 - Inquiry + Strongly Agree
 - I enjoy degreeing how scientists work with data sets Tradition defutral
 - I prefer to follow lab instructions in a step-by-step approach 1= Strongly Disagree
- Content
 - 10 Brinder Ruckeniswer
 - Explain what radial and tangential winds are relative to a TC 3= full correct answer
 - 1 MultipleaCologiaeanswer
 - Which of the above profiles is most likely to be a mean wind profile in and the profile in the pro

RESULTS

Used one-way analysis of variance (ANOVA)

Changes in Attitude by Group Changes in Content Knowledge by Group Content Retention by Group Inquiry Attitude Change

Traditional Attitude Change

Content Retention by Group

Conclusions

 Both groups had no statistically significant attitude changes about science labs

• Both had significant content growth

- Only minor significant differences in content growth or retention by group
 - Favors traditional

Inquiry-based learning approach using real-world data was effective at conveying content knowledge.

Discussion

- Preference for other group
- Technology had largest influence on attitude
- Both had challenges
 - Traditional
 - Wanted more feedback during lab
 - Couldn't discuss how to plot
 - Found it boring and repetitive
 - Inquiry
 - Struggled to keep pace with group
 - Too much focus on plotting, not enough on learning

These challenges can be overcome by providing students with more opportunity to become familiar with the technology and providing teacher scaffolding as they build their inquiry skills.

Acknowledgements

<u>Committee</u> Bruce Albrecht Paquita Zuidema Frank Marks Kevin Kloesel Okhee Lee-Salwen (David Nolan and Pavlos Kollias)

<u>Radar Group</u> Xue, Eunsil, Ming, Virendra Dan Voss and Tom Snowden Bri Winkler

NCAR EOL: William Brown NC STATE: Sandra Yuter NSF #663684

Classmates and Faculty in RSMAS and TAL

Thank You!

Ja / due